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Abstract: The integration of robots into social environments necessitates their ability to interpret
human intentions and anticipate potential outcomes accurately. This capability is particularly crucial
for social robots designed for human care, as they may encounter situations that pose significant
risks to individuals, such as undetected obstacles in their path. These hazards must be identified
and mitigated promptly to ensure human safety. This paper delves into the artificial theory of mind
(ATM) approach to inferring and interpreting human intentions within human–robot interaction.
We propose a novel algorithm that detects potentially hazardous situations for humans and selects
appropriate robotic actions to eliminate these dangers in real time. Our methodology employs a
simulation-based approach to ATM, incorporating a “like-me” policy to assign intentions and actions
to human subjects. This strategy enables the robot to detect risks and act with a high success rate,
even under time-constrained circumstances. The algorithm was seamlessly integrated into an existing
robotics cognitive architecture, enhancing its social interaction and risk mitigation capabilities. To
evaluate the robustness, precision, and real-time responsiveness of our implementation, we conducted
a series of three experiments: (i) A fully simulated scenario to assess the algorithm’s performance
in a controlled environment; (ii) A human-in-the-loop hybrid configuration to test the system’s
adaptability to real-time human input; and (iii) A real-world scenario to validate the algorithm’s
effectiveness in practical applications. These experiments provided comprehensive insights into the
algorithm’s performance across various conditions, demonstrating its potential for improving the
safety and efficacy of social robots in human care settings. Our findings contribute to the growing
research on social robotics and artificial intelligence, offering a promising approach to enhancing
human–robot interaction in potentially hazardous environments. Future work may explore the
scalability of this algorithm to more complex scenarios and its integration with other advanced
robotic systems.

Keywords: social robotics; cost-effective; artificial theory of mind; human–robot interaction

1. Introduction

In recent decades, robotics have advanced by leaps and bounds, opening up new
possibilities in various areas, including human care and assistance. Assistive robots,
or “caregiving robots”, have emerged as a promising solution to address the challenges
associated with an aging population and caregiver shortages. These robots are designed to
help the elderly, disabled, or chronically ill by providing physical, emotional, and social
support. To facilitate human–robot collaboration, these robots must be sophisticated in their
social environment, demonstrating advanced reactivity, interaction, and comprehension [1].
The development of social awareness in robots is a complex process influenced by many
factors, including cultural norms, social cues, diverse human activities, and the individual
preferences of those in their vicinity. To achieve social adeptness, robots must go beyond
the mere perception of their physical surroundings. They must develop the ability to
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comprehend any situation’s social and contextual nuances. This involves, among other
things, recognizing the presence of people in the robot’s surroundings and interpreting
their behaviors, emotions, and intentions within the broader social context [2].

Caregiving robots, in particular, face unique challenges that demand an even higher
level of social intelligence. These robots must be able to continuously sense and interpret
the ongoing activities of individuals within their operational environment. This real-time
analysis serves a crucial purpose: anticipating potential risk scenarios before they materi-
alize. Armed with this foresight, caregiving robots must be able to adjust their behavior
swiftly and effectively to mitigate emerging risks in a manner that is effective and socially
acceptable. The achievement of these goals requires the integration of several advanced
capabilities. Firstly, caregiving robots must have predictive algorithms to forecast forthcom-
ing events. Secondly, they need sufficient computational power to analyze these predictions
rapidly and foresee their potential consequences across various scenarios. Finally, and
perhaps most challenging, these robots must be programmed with an understanding
of human social norms and expectations. This understanding should guide the robot’s
decision-making process, allowing it to select actions that effectively address the immediate
situation and align with societal expectations of appropriate behavior.

In this paper, we expand upon previous research in the field of artificial theory of mind
(ATM) [3] and its relationship to simulation-based internal models [4,5]. Theory of mind
(TM) is a fundamental cognitive capability that enables individuals to predict their actions
and those of others [6]. This concept provides a plausible framework for understanding
how humans can anticipate the behavior of others in specific situations [4,7]. Within
the broader field of TM research, several theoretical approaches have been proposed to
elucidate the underlying cognitive processes. In this study, we adopt the simulation theory
(ST) variant, which posits that “. . . people use imagination, mental pretense, or perspective-
taking (‘putting oneself in the other person’s shoes’) to determine the mental states of
others” [8]. This approach emphasizes the role of mental simulation in understanding and
predicting the thoughts, feelings, and actions of others.

Our primary contribution in this paper is twofold: (i) We aim to further support the
hypothesis that simulation-based internal models can serve as a viable foundation for
implementing ATM in artificial systems. By demonstrating the efficacy of this approach,
we seek to bridge the gap between human cognitive processes and artificial intelligence
systems; (ii) Building upon this theoretical framework, we present a working model
and a practical example of human caregiving in social robots. This model showcases
the application of ATM principles in a concrete, real-world scenario, illustrating how
simulation-based approaches can enhance the social intelligence of robotic systems.

2. Related Work

The ATM in robotics has evolved significantly since its inception, playing a novel
role in developing socially intelligent robots. This section provides an overview of the key
developments in ATM, highlighting the progression from early conceptual frameworks to
current state-of-the-art approaches.

Scassellati’s seminal work laid the foundations of ATM in robotics [3], which proposed
and implemented a detailed framework in the humanoid robot Cog. This pioneering effort
catalyzed research in the domain, establishing ATM as a crucial component in developing
socially intelligent robots. Building on this foundation, Kennedy et al. [7] presented an
early implementation of simulation-based ATM using an embodied version of ACT-R/E.
Their “like-me” approach demonstrated the potential of enhancing a robot’s perceptual
capabilities, particularly in inferring human gaze direction. However, this early work did
not extend to modeling these inferences as intentions or translating them into actionable
plans, a limitation our current research aims to address.

Gray et al. [9] explored a robot’s ability to manipulate human beliefs by concatenating
action-simulation and mental-state-simulation primitives. While their work presented
a scheme for recursively modeling beliefs, it focused on illustrating how embodiment
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connects agents’ mental states rather than applying ATM to social robots in real-time
scenarios. A recent work [4,5] introduced an architecture featuring a simulation-based
internal model called the consequence engine. Although their approach shares similarities
with ours, their robots operated in a 2D grid environment, with simulated actions being
projections of their state into the future using existing movement controllers. In contrast, our
model assigns intentions to people as potential relations with visually detectable objects,
which are then transformed into actions, allowing for a more abstract representation
conducive to adaptation and learning.

Lemaignan et al. [10] proposed an architecture with an ATM module where simulation
is carried out by a high-level planner using shared plans. Their approach extends ATM
into a theory theory (TT) variation, differing from the internal model-based simulator
approach [11]. Recent studies have explored the relationship between ATM in robots
and its effect on people’s acceptance or trust [12], as well as its connection with ethics and
security [13]. The findings of empirical studies indicate that human beings are more inclined
to accept, and place greater trust in, robots that have been programmed with the capacity
for TM abilities [14]. Recent advancements in deep learning and reinforcement learning
have also contributed to the field of ATM in robotics. For example, Rabinowitz et al. [15]
introduced a neural network model called theory of mind network (ToMnet) that can learn
to model the mental states of other agents from observations of their behavior.

From a broader perspective, detecting human intentions has gained significant interest
in social robotics, particularly in socially aware robot navigation [16]. For instance, Fer-
rer et al. [17] developed a system where the robot accompanies a person while predicting
their intentions to reach a destination. Kostavelis et al. [18] proposed a system that detects
human intentions regarding goal positions, considering places with semantic meaning as
potential targets. Mavrogiannis et al. [19] presented a system that detects signals of inten-
tions or preferences regarding avoidance strategies, enabling the agent to simplify people’s
decision-making. Skrzypczyk et al. [20] introduced a control scheme for an intelligent
wheelchair navigation assistant that detects cooperative and non-cooperative behaviors by
comparing predicted pedestrian positions to real ones. While we share with these works
the goal of characterizing intentions, our experiment also explored how intentions are
converted into actions and their potential consequences. Shvo et al. [21] presented an algo-
rithm for proactive assistance in robots. It integrates epistemic planning-based techniques
and adds TM capabilities, with the aim of inferring human plans from the environment and
executing a task based on the inferred plan. Cunningham et al. [22] proposed an approach
more aligned with ours, where the robot simulates itself and other agents forward under
assigned policies to obtain predicted states and observation sequences. However, their
work differs in how context is represented and how new goals (e.g., dangerous situations)
are detected and integrated into the search for successful actions.

Related to detecting collision risks, Koide et al. [23] predicted both trajectories and
dangerous situations using a convolutional neural network (CNN). In this approach, a
local environmental map is used as an input, and the CNN determines whether a collision
risk exists and predicts the human trajectory. The training of the CNN is conducted using
datasets of tracked individuals, where the authors incorporated the introduction of virtual
obstacles along the trajectory of the individuals. This idea is based on the assumption that
if a person is not aware of an object in his or her immediate vicinity, that person will behave
as if the object is not there. This concept has significant parallels with ours for planning
a human’s path to a desired target. Our research extends to the notion that the robot is
positioned to observe an obstacle in close proximity, and thus how this can facilitate the
avoidance of a hazardous situation. Moreover, the utilization of a CNN as an opaque entity
that determines whether a human is at risk of collision entails, in the case of an erroneous
network output (i.e., false positive), an inability to identify the underlying causes of the
unsatisfactory result and, consequently, the capacity to act by enhancing the detector’s
functionality.
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3. Methodology

This section describes the model that assigns intentions to humans using the same
cognitive mechanisms our robot employs to attach itself to local goals. This approach,
known as a “like-me” simulation [7], leverages the robot’s capabilities to understand and
predict human behavior. Our robot, Shadow [24], has advanced visual object detection and
navigation capabilities. It can identify objects in its environment, select them as targets, and
navigate toward them along obstacle-free paths. We extend this functionality to interpreting
human intentions by establishing conceptual links between nearby humans and objects in
their vicinity.

The robot interprets these human–object links as potential actions that the person
might perform, limited to the actions the robot can execute. This constraint ensures that the
robot’s predictions remain within the realm of its experiential framework, enhancing the
accuracy of its simulations. To comprehend the consequences of human actions, the robot
employs an internal model to simulate these actions from a third-person perspective. This
approach aligns with the theory proposed in [25], which posits that a robot understands a
phenomenon if it possesses a model for it and the logical implications within that model
correspond to real-world causality.

To explore this concept further, we equipped the robot with a simplified model of itself
and its interactions with the environment. This model is executed within an internal physics-
based simulator (PyBullet), allowing the robot to explore the potential consequences of its
actions within the simulator’s possibilities (e.g., collisions between elements) and develop
executable plans. Extending this reasoning, we apply our understanding theory to the
intentions our model assigns to humans. The robot simulates possible human actions,
evaluating their environmental consequences and potential security risks. If a simulated
intention poses a risk to an individual, the robot continues its simulation process, exploring
whether any actions could mitigate or eliminate the identified risk. If a viable solution is
found, the robot executes the risk-mitigating action.

This process is illustrated in Figure 1, which depicts a scenario where a person is
assigned two potential targets: a door and a couch. Each target generates several possible
trajectories. When one of these trajectories is identified as dangerous (e.g., an obstacle
in the path), the robot simulates an action that could avert the potential risk. The robot
conducts a secondary simulation to validate the effectiveness of its planned intervention.
This simulation places the robot at the imagined final position of its proposed action and
re-simulates the person’s trajectory. This process allows the robot to confirm that the person
would recognize the additional physical presence of the robot and consequently plan a
new, obstacle-free path.

3.1. The CORTEX Architecture

For our experiments, we employed a streamlined version of the CORTEX robotics
cognitive architecture [26]. CORTEX is a multi-agent architecture designed to facilitate
the creation of information flows among various memories and modules. These flows
are driven by agents, which share their information thanks to the working memoryW .
W is a distributed graph structure implemented using conflict-free replicated data types
(CRDT) [27]. It can be formally defined as

W = (V, E, AV , AE) (1)

where V is the set of vertices (nodes) representing elements of a predefined ontology,
E ⊆ V × V is the set of edges, AV : V → 2Attr is a function mapping vertices to sets of
attributes, and AE : E→ 2Attr is a function mapping edges to sets of attributes. Edges can
encode geometric transformations or logical predicates. Both nodes and edges can store a
list of attributes of predefined types.
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(a)

(b)
Figure 1. The robot identifies two potential targets for the human: a door and a couch. For each
target, it generates a trajectory, excluding any obstacles that fall outside the human’s field of view
from the planning process. Upon analysis of the generated trajectories, a potential collision with
an obstacle is identified in the trajectory corresponding to the door. To avoid this collision and
maintain the human’s safety, the robot considers a range of potential actions that could be taken to
eliminate the collision in the human’s trajectory towards the door. (a) Estimation of trajectories from
the person to the objects of interest. (b) Possible collision avoidance action, displacement of the robot
to the obstacle.

Figure 2 illustrates the CORTEX cognitive architecture, depicting its hierarchical struc-
ture across cognitive and sub-cognitive levels. The system is anchored by our centralW
at the cognitive level, represented as an octagonal shape. W contains representations of
various elements in the robot’s environment, including ‘robot’, ‘person’, ‘couch’, ‘intention’,
and ‘door’. SurroundingW there are several CORTEX agents (e.g., ‘Mem’ (Memory): This
connects to a more significant ‘Memories’ box above, which includes semantic, episodic,
procedural, and spatial memory types; ‘Sim’ (Simulation): This links to an ‘Inner simulator’
component, visualized with abstract shapes suggesting mental modeling or prediction
capabilities; ‘Body’: Interfacing with the sub-cognitive level; and ‘Atom’ (Atomic): Purpose
not explicitly defined). In Figure 2, the sub-cognitive level contains a network of inter-
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connected software components that handle lower-level processes (e.g., Sensory inputs:
‘LiDAR(s) 3D’ and ‘Camera 360’; Processing modules: ‘Tracker’, ‘Instance’, ‘Semantic’,
‘Grid’, ‘MPC’ (model predictive control), and ‘Bumper’; Action output: ‘Omni base’ for
movement; and ‘Controller’ coordinating these sub-components). The sub-cognitive level
takes in visual objects and regions (VE) as input and outputs move_to(e) commands to a
visual target.

Figure 2. Schematic representation of the CORTEX architecture. The architecture is divided into two
levels: cognitive and sub-cognitive. The cognitive level focuses on hostingW and the internal simula-
tor (PyBullet), while the sub-cognitive level hosts the software that manages the low-level processes.

The cognitive CORTEX architecture has been successfully used in different robotic plat-
forms [28]. In our simulation-based approach to ATM, the essential elements of CORTEX
are identified as follows:

• W , as defined above.
• The sub-cognitive level, S, which can be represented as a function:

S : I →W × T (2)
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where I is the input from sensors, and T is the set of possible visual targets for
navigation.

• The software agent AS connecting the sub-cognitive module withW :

AS : S→W (3)

• The internal simulator Σ, based on PyBullet (https://pybullet.org/ accessed on 22
August 2024), and its interfacing agent AΣ:

Σ :W × A→W ′ (4)

where A is the set of possible actions, andW ′ is the simulated future state ofW .
• Two new agents, AATM1 and AATM2, implementing the artificial theory of

mind (ATM):
AATM1 :W →W × I (5)

AATM2 :W × I →W × A (6)

where I is the set of inferred intentions, and A is the set of possible actions.

Agents can modifyW to create and maintain an updated context, making it accessible
to all other agents. The information flow can be described as a series of transformations:

Wt
AS−→ Wt+1

AATM1−−−−→ (Wt+2, I)
AATM2−−−−→ (Wt+3, A) (7)

whereWt represents the state ofW at time t.

3.2. Simulation-Based Approach to Artificial Theory of Mind

We present our novel approach to the ATM in caregiving robots. We leverage a
“like-me” simulation paradigm to assign intentions to humans and predict their actions
within the robot’s operational environment. This model enables the robot to utilize its
internal representations to comprehend and anticipate human behavior, enhancing its
social intelligence and risk mitigation capabilities.

3.2.1. Problem Formulation

W contains all current robot beliefs about its environment. The context ctx is defined
as the content ofW , including all the robot’s current beliefs about its environment. The
internal simulator typically runs synchronously with the context, effectively maintaining a
copy of the state. When the “like-me” process starts, the simulator is temporarily detached,
and people’s intentions and the robot’s actions can be safely simulated. Upon completion,
the simulator goes back into synchronization mode.

We define an intention as the engagement that a person establishes with an object in
the environment, possibly through its affordances . Intentions are enacted by linking them
to one or more of the robot’s potential actions and then simulated with its internal model.

Let H = {h1, h2, . . . , hn} be the set of humans in the environment and O = {o1, o2, . . . , om}
be the set of detectable objects.

We introduce an intention function I : H ×O× A× G → {0, 1}, where A is the set
of possible actions and G is the set of possible gaze directions. I(hi, oj, ak, gl) = 1 if the
intention is considered risky (i.e., leads to a collision), and 0 otherwise.

We have implemented two algorithms that read and modify W . The first agent is
activated when people are inW . It will guess and enact their intentions, marking some
of them as dangerous if a collision is detected. The marked intentions activate the second
agent, seeking a feasible robot intervention that cancels it. Both agents communicate
through annotations inW . Two predefined lists are provided to simplify the notation: Gaze
and Actions, which contain the minimum and maximum values for the vertical gaze of a
generic human and the list of the robot’s actions, respectively.

https://pybullet.org/
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3.2.2. Intention Assignment and Simulation

According to the ctx information, for each person hi ∈ H and object oj ∈ O within the
person’s field of view, we generate intentions for each possible action ak ∈ A and sampled
gaze direction gl ∈ G:

intijkl = intention(hi, oj, ak, gl) (8)

Each intention is then simulated:

c = sim(ctx, intijkl) (9)

where c is a flag indicating whether a collision occurred during the simulation. Algorithm 1
formalizes the process of intention guessing and enacting.

Algorithm 1 starts by accessing the current context ctx provided byW and the lists of
people H and objects O in the robot’s environment. For each person, hi, the list of objects
entering their field of view (Tgts) is obtained using a simple geometric inclusion test over
a predefined frustum (line 5). Each object is assumed to be a potential interaction target
for the person. Thus, for each person and target, intentions enacted by potential actions
must be simulated to predict risky situations. An intention is considered dangerous if its
enactment entails a collision. Since the risk assessment depends on the person’s ability
to perceive the situation, the person’s gaze is also considered during the simulation. We
assume the robot cannot estimate this from its position, so the predefined range in Gaze is
uniformly sampled (line 8). According to the person (pi), the object (tj), the action (actk),
and the gaze (gazel), an intention intijkl is finally generated (line 9).

Algorithm 1 Intention guessing and enacting

Require: W, Gaze, Actions
Ensure: W

1: ctx ← getContext(W)
2: People← getPeople(ctx)
3: Objects← getObjects(ctx)
4: for all pi ∈ People do
5: Tgts← f ov(pi, Objects)
6: for all tj ∈ Tgts do
7: for all actk ∈ Actions do
8: for all gazel ∈ sample(Gaze) do
9: intijkl ← intention(pi, tj, actk, gazel)

10: c← sim(ctx, intijkl)
11: W ← addToW(W, (intijkl , c))
12: end for
13: end for
14: end for
15: end for

The simulator is then called to execute that intention given the current context (ctx)
(line 10). This call implies freezing the current context so changes can be made without
interfering with the perception of reality. The simulation proceeds by executing action actk
under the constrained access to objects in the scene given by gazel . In this experiment, the
robot’s only action is goto(x), so the simulator proceeds in two steps: (a) a path-planning
action to compute a safe route from the person to the target object, in which the occupancy
grid is modified to include only the objects in the person’s field of view; and (b) the dis-
placement of the person along that path in the unmodified scene. The first step corresponds
to the question “how does the person move through her environment given the assigned
gaze?” and the second to “how does the robot imagine from its point of view what the
person will do?” The path is executed using a copy of the robot’s path-following controller.
The simulation provides the answers to the two questions, returning a flag c signaling the
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occurrence of a collision. Finally, in line 11,W is updated to include the new intention with
the attribute c, possibly marking a risky situation.

3.2.3. Intervention Planning

Algorithm 2 describes the action selection process for intervention. For each risky
intention intijkl (where c = 1), the robot considers its own possible actions am ∈ A and
objects on ∈ O:

robotmn = intention(robot, on, am) (10)

The robot then simulates the combination of its action and the human’s intention:

c = sim(ctx, [robotmn, intijkl ]) (11)

If c = 0 (no collision), the robot’s action robotmn is considered a valid intervention.

Algorithm 2 Action selection

Require: W, Actions
Ensure: W

1: ctx ← getContext(W)
2: Intentions← getIntentions(ctx)
3: Objects← getObjects(ctx)
4: for all intijkl ∈ Intentions where intijkl ∈ Risk do
5: for all actm ∈ Actions do
6: for all on ∈ Objects do
7: robotmn ← intention(robot, on, actm)
8: c← sim(ctx, [robotmn, intijkl ])
9: if ¬c then

10: W ← addToW(W, robotmn)
11: end if
12: end for
13: end for
14: end for

Algorithm 2 runs on a different agent and initiates when an intention is marked as
risky inW . The algorithm iterates over the robot’s action set, Actions, to check if executing
any of them removes the risky intention. There is no a priori knowledge of which action to
try first or if any of them will succeed. The first loop goes through the intentions marked
as dangerous (line 4). Then, following a similar procedure as in Algorithm 1, the robot
assigns to itself intentions to all visible objects. The robot’s intention robotnm along with the
person’s intention intijkl are sent for simulation (line 8). This call entails the re-enaction of
intijkl , but this time also considering the robot’s action. If that action makes the collision
disappear, it is selected for execution in the real world by adding the corresponding robot
intention toW .

4. Experimental Results

This section describes the experiments carried out to evaluate our proposal. Initially,
we describe the scenario used, both in the simulation and in the real experiments. Then, we
detail the three specific tests conducted for the evaluation.

4.1. The Scenario

As a test bed for our research, we created a scenario using the Webots simulator.
Figure 3 shows the simulated scenario, which represented a room with the following
elements: an autonomous robot; a person positioned near the wall opposite the door; a
door and a couch, which represent potential targets for the person; and a soccer ball in the
center of the room, which adds complexity as a moving obstacle that can cause a dangerous
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situation if the person does not catch sight of it. In this simulation, the robot had to use
its internal model to predict the person’s possible trajectories, acting proactively to avoid
collisions and ensure safety.

Figure 3. Simulated scenario used to evaluate the robot’s ability to anticipate and mitigate risks. The
room contains several key elements: an autonomous robot positioned near the door, a person located
near the wall opposite the door, a door and a couch representing potential targets for the person, and
a soccer ball as a dangerous object during human movement. The robot must use its internal model
to predict possible trajectories of the person, acting proactively to ensure safety.

The robot was a custom-built unit named Shadow [24], with a rectangular base with
four Mecanum wheels. The robot’s main sensors were a 360◦ camera placed on a 3D
LiDAR. Both devices were situated in the uppermost part and were co-calibrated. The
3D pointcloud was projected onto the camera image to provide a sparse depth plane
that was used to estimate the distance to regions in the image. All objects in the scene
were recognizable by the you only see once (YOLO) (we used YoloV8 from Ultralytics.
https://www.ultralytics.com/ accessed on 22 August 2024) deep neural network [29].
There were no other distractors in the room. If the detected element was a person, its
skeleton was passed to a second DNN, JointBDOE (https://github.com/hnuzhy/jointbdoe
accessed on 22 August 2024), to estimate their orientation [30]. All detected objects were
assigned a depth coordinate obtained from the LiDAR. In addition, they were tracked using
the ByteTrack algorithm [31] to assign them a persistent identification tag. We defined a
visual element e as belonging to the set of YOLO recognizable objects VE. The stream of
detected visual elements was defined as et ∈ {VE}, where t ≥ 0. The robot in this scenario
could only execute one action, move_to(ei), where ei is a visually detectable object in the
scene. It did not have a speaker. The action was executed by a local controller consisting
of several components: a path planner over a local grid, a model predictive control over
the generated trajectory, and a virtual bumper [24]. No global map was needed to execute
the visually guided motions. The robot had a known maximum speed and acceleration. A
new target e ∈ {VE} was sent to the local controller whenever the robot was required to
approach a different object in the scene.

4.2. Validation of the Approach

The two proposed algorithms were implemented as new agents in the architecture
and tested with three experiments. The first one consisted of a series of simulations in
Webots, where some free parameters were sampled. The second introduced uninformed
human subjects in the loop to evaluate their reactions to the robot intervention, and the
third experiment was performed with a real robot and person.

These experiments were designed to test the ATM model and its implementation as
a means of detecting potentially dangerous situations caused by people’s intentions. We

https://www.ultralytics.com/
https://github.com/hnuzhy/jointbdoe
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assumed that people always chose the risky path. Thus, we did not try to predict and detect
other possible choices.

4.2.1. Situation Analysis and Decision-Making Test

The first experiment consisted of 180 initializations of the nominal scenario, letting
the robot analyze the situation and decide which action to take. The sampled variables
were the positions of the robot, the ball, and the person. The range of positions used in
all cases was a 1.5 m radius. The human always followed a direct trajectory towards the
couch at a constant speed of 0.5 m/s. Figure 4 shows the different elements involved in
the experiment. The graph in the upper-left shows the current state ofW with the robot
node labeled Shadow at the center. The perceived objects and the person were connected
to the robot with RT edges that stored an SE(2) geometric transformation. The rest of the
edges were 2-place logic predicates representing perceived relationships between nodes. In
this example, a has_intention edge connects the person to their intended destination, and
a collision node signals that they may implement their intention via an unsafe path. At
the top right, the contents ofW are graphically displayed. The person is represented by a
yellow circle connected to a green cone, which limits their field of view. Two paths connect
the person to the couch. One of the paths crosses the obstacle, represented as a red box,
indicating a possible collision. The couch is drawn as a green box. The robot is depicted
twice, in red occupying its starting position and in light green occupying the imagined
position that will make the person change their path. The lower left image is a zenithal
view of the scene, and the right image shows the PyBullet scene used to simulate the robot
and the person traversing the paths.

Figure 4. Combined view showing the contents of W (up-left); a 2D graphical representation of
W with two paths going from the person to the couch (up-right), the yellow path represents the
route that would take the person directly to the couch without seeing the obstacle, while the red path
shows the alternative route when the robot is moved; a zenithal view of the scene as rendered by
Webots (down-left); and a 3D view of the internal simulator, PyBullet, with simple geometric forms
representing the elements in the scene (down-right).

Table 1 shows the results of 180 runs with the Webots simulator. Of the total number
of experiments, 13 were discarded due to the absence of detected intentions. Considering
the remaining experiments (167), the proposed intention-guessing algorithm provided an
accuracy rate of 79.64%. The primary source of loss of accuracy was the detection of false
positives. This means that the robot wrongly detected some risky situations that would,
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in reality, not pose a danger to the person. The primary causes of these false positives
were the inaccurate sizes of the shapes representing the person and the obstacles in the
internal simulator, as well as the errors in the estimations of real distances due to noise in
the LiDAR measurements. Nevertheless, the algorithm did not produce false negatives,
i.e., all the unsafe intentions were correctly identified by the robot and no risky situation
was left unattended. Both facts can also be derived from the resulting precision and recall
values. Given the consequences of failing to detect jeopardized intentions, recall can be
considered more vital than precision. Taking this into consideration, we measured F1
and F2 scores [32]. While the obtained F1 score was moderately high, reaching a value of
approximately 0.76, the F2 score indicated a high level of effectiveness.

Regarding the time metrics, the mean reaction time, which is the period from detecting
a possible collision to the appearance of an action that can avoid it, was less than 0.75 s.
The experiment suggested that an under one second response time is sufficient for real-
time operation in this scenario. Additionally, the robot could generate an action that
prevented the person from colliding in most situations detected as risky. Although the
reaction time will grow with the number of objects, people, and actions in the scene, with
their corresponding free parameters, given some of the heuristics and pruning strategies
discussed in the next section, we believe it can still be kept low enough to work in more
complex scenarios.

Table 1. Summary of experimental results.

Metric Value

Total Experiments 180
Experiments Discarded 13
Valid Experiments 167
Accuracy Rate 79.64%
False Positives 20.35%
False Negatives 0%
Precision 0.61
Recall 1.0
F-1 Score 0.76
F-2 Score 0.89
Reaction time (mean) 747 ms
Reaction time (deviation) 310 ms
Experiments with Detected Collision and Action Generated 85.18%

4.2.2. Human-in-the-Loop Test

A second experiment was conducted to test the reaction to the robot’s intervention of
human subjects unfamiliar with the problem. This experiment had a human-in-the-loop
configuration, where six subjects were instructed to control the person’s trajectory in the
simulator using a joystick and a view from a virtual camera placed on an avatar. The
subjective camera was oriented in a way that prevented the subjects from seeing the ball
on the floor. The subject’s goal was to reach the couch on the other side of the room, and
they were only allowed to play with the joystick for a few seconds. After completing
the experiment, all subjects avoided the hidden ball when the robot entered their field
of view and was detected. Qualitatively, all subjects generated different trajectories with
unequal free margins to the unseen obstacle but completed the task without incidence.
These variations were not considered relevant to the experiment. Figure 5 shows a sequence
of six frames from one of these trials. The series runs from top left to bottom right, and each
frame is split into two: the Webots zenithal view of the scene at the top and the subjective
view shown to the human subject at the bottom. In the sequence, as the robot enters the
field of view, the person corrected the trajectory and drove the avatar to the target position.
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Figure 5. Human-in-the-loop experiment (top left to bottom right). The upper half of each frame is
the zenithal view rendered by the Webots simulator, where the red, blue, and green axes mark the
reference system of the obstacle between the person and the couch. The lower half of each frame is
representative of the first-person perspective, as observed by the human subject who was undertaking
the experimental procedure. As can be seen, the obstacle was outside the field of view. When the
robot approached the obstacle, frames 2–3, the subject turned left, overcoming it and safely reaching
the couch.

4.2.3. Real-World Test

The third experiment was performed with the Shadow robot [24] in a real scenario.
A group of five subjects were instructed to cross the room while reading a paper and
heading towards a chair on the other side. A backpack was in the way (We replaced
the football with a backpack because, in the real scenario, YOLO detected it much more
confidently), and they were instructed to ignore it. They were not briefed about the
robot participation. In all five trials, the robot detected the subject and moved close to
the unseen obstacle to prevent the person from stumbling. The subjects reacted to the
robot’s intervention with varying degrees of surprise due to the unexpectedness of the
event, but all continued on their way to the assigned target. This variety in people’s
reactions could be used to adapt the internal model according to a comfort metric, resulting
in smoother, less startling movements. This idea is commented on in the next section.
Figure 6 shows a three-frame sequence from one of the trials. The lower part of each frame
shows a graphic representation ofW with the robot in brown heading upwards, the person
in yellow heading downwards, the backpack in red, and the chair in green. The line of
yellow dots shows the path attributed to the subject during the internal simulation phase.

Figure 6. Real-world experiment (left to right). The upper half of the frame shows the view from
the robot’s camera. The lower half shows a schematic view ofW , with the person represented as a
yellow circle, the backpack on the floor as a red square, and the target chair as a green square. The
robot is colored dark red. The subject walks distractedly towards the chair (frame 1) and reacts when
the robot starts moving (frame 2), changing direction and continuing.

5. Discussion

The ATM is slowly gaining momentum as a tool for adding third-view reasoning
capabilities to robotics control architectures, but there are still many open issues. Our
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research shows that an internal physics-based simulator embedded in a robot’s control
architecture could be the key to integrating the ATM into the set of cognitive abilities.
Current technology allows direct and precise control of a simulator’s scene graph and
time step. However, this integration relies on the existence of aW offering a stable and
updated view of the current context based on a hybrid numeric–symbolic representation.
This memory relies, in turn, on other modules that provide the necessary connections to
the world. Putting all these together implies a considerable development effort and, as
we see it, the ability to further pursue this task is linked to three key aspects related to the
feasibility of the approach: (a) the stability and reliability ofW representing the current
context in which inferences can be made; (b) the combinatorial explosion caused by the
nested relationships between participants and the free parameters of their actions; and (c)
the robustness required for reliable real-time execution in more open scenarios.

The multi-agent CORTEX architecture addresses the first issue to a reasonable extent,
withW being updated by agents that connect to the subcognitive modules. Although there
is ample room for improvement, the results show that the representation is stable and can
handle a real-world, real-time situation under fairly realistic conditions. In addition, the
underlying data structure, which holds symbolic and numeric values, can be monitored to
provide a clear view of the internal reasoning process, facilitating a path to accountability
and ethics.

A second problem is the exponential growth caused by the nested searches that unfold
all possible relationships among the robot, its actions, the objects in the scene, and the
individuals. This search can be curtailed if we consider ways to exit the loops as soon as
possible or even to skip them altogether. Studies in humans suggest that no more than
two or three alternative strategies are evaluated, at least without interrupting the ongoing
behavior and resorting to more extended reflection [33,34]. A first prune could be achieved
by forcing time and space constraints. In our experiments, the person-to-collision time
limited the admissibility of a robot’s action, i.e., displacements that will not arrive in time
are discarded. Another limitation comes from the maximum number of people that can
be represented in W simultaneously, which is an architecture parameter. This number
could be further reduced by distance to the robot, relative position, or certain attributes of a
person that could be relevant in the current context. A further reduction could be achieved
if the search ends as soon as an action is found that removes the danger, but more efficiently
if the sets are ordered according to some metric or drawn from an a priori distribution
learned from experience. For example, intentions could be assigned to objects according to
prior knowledge of the person’s habits, and actions could be assigned to intentions biased
by the objects’ affordances.

The third aspect, robustness, is particularly relevant for robot operation in human-
populated scenarios. Robustness depends on the stability of the representation, on the
ability to learn from experience the optimal values of actions’ and objects’ free parameters,
i.e., robot speed, human habits, specific place to stop, time to start, etc., in each context, and
on the ability to recover from failures and unforeseen events during the execution. This
suggests that to improve the robustness, the control architecture has to be more adaptable
at each level of its organization, integrating learning algorithms that capture the effect of
the interventions on humans in specific contexts to fine-tune the free parameters.

An interesting issue arises in complex real-world scenarios when more than one person
is in the scene and they have assigned risk intentions. In this case, the robot would face
the dilemma of saving one and ignoring the other. This kind of decision would involve a
more complex evaluation of the situation, using a system of values and thus entering the
emerging field of social robot ethics [35].

In a simulated environment, the controlled space allows efficient development and
testing of algorithms. A simple scenario was modeled where the robot interacted with a
single person, a fixed obstacle, and a target object. The sensor data were augmented with
computed virtual noise to closely mimic real-world conditions. This approach ensured that
the simulated sensor data, particularly from LiDAR, closely approximated the noise char-



Appl. Sci. 2024, 14, 8057 15 of 17

acteristics and variability found in real-world measurements, thereby producing distance
measurements that were comparable across both environments. This method enhanced the
realism of the simulation, allowing the robot to process sensor data in a way that closely
mirrored real-world scenarios.

Furthermore, the algorithm was designed to identify and classify objects using a YOLO
neural network, which inherently makes the system dependent on the network’s output.
The performance of this neural network could vary significantly between simulated and
real environments due to differences in data quality and variability. Moreover, while in
a simulation a person follows a predefined or random trajectory within a limited range,
allowing the robot to easily anticipate the future position of the person and the obstacle
using the internal simulation, in the real world, people can behave unexpectedly or irra-
tionally. This unpredictability adds an additional layer of complexity to conducting real
experiments, requiring monitoring mechanisms that continuously assess different variables,
from ongoing hazard assessment to the feasibility of the action taken. This enables the
robot to halt unnecessary actions that may disrupt the human’s actions.

6. Conclusions and Future Work

The work presented in this paper is a new step towards an ATM that can be effectively
run inside a robotics cognitive architecture. We rely on aW that holds a representation
stable enough for an inner simulator to take third-view perspectives.

In future work, we expect to increase the number and complexity of the robot’s actions,
while keeping the number of combinations small, using algorithms that learn an optimal
selection order from experience, anytime design techniques, or sorting heuristics from
external knowledge sources.

One potential avenue for future research would be to extrapolate the proposed al-
gorithm to other known robotic systems. The employment ofW permits all agents to be
concurrently aware of changes to this shared memory space. Given the limited number
of agents currently included in the system, it may be feasible to extrapolate the commu-
nication between these agents throughW to a publish/subscribe system between agents.
However, as the architecture has been designed in a modular way, an increase in the robot’s
ability to infer human actions and act accordingly may result in a corresponding increase
in the complexity of inter-agent communication.

In the context of this investigation, given that the robot was solely equipped with a
base actuator to undertake corrective actions in response to a dangerous scenario, the “like-
me” simulation was conducted through the simulation of GOTO actions. The incorporation
of supplementary interaction mechanisms into the robot’s operational capabilities would
facilitate a significant expansion in the range of scenarios that could be subjected to analysis.
This, in turn, would enable the formulation of a multitude of actions that could effectively
mitigate the risk of adverse situations involving diverse interaction mechanisms.
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